TED (15) – 3043 (REVISION – 2015) Reg. No.....

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ELECTRICAL TECHNOLOGY

[Time: 3 hours

(Maximum marks : 100)

PART - A

(Maximum marks: 10)

Marks

 $(5 \times 2 = 10)$

I Answer all questions in one or two sentences. Each question carries 2 marks.

1. Define time period.

2. Write voltage transformation ratio of a transformer.

3. How can limit Eddy Current Loss ?

4. Which starter is suitable for starting of a DC series motor.

5. List any two advantages of poly phase motor.

PART — B

(Maximum marks : 30)

II Answer any five of the following questions. Each question carries 6 marks.

1. Derive the equation impedance, power and power factor of RLC series circuit.

- 2. State and explain maximum power transfer theorem.
- 3. Explain the different types of losses in a transformer.
- 4. Classify DC generators based on its field excitation.
- 5. Derive the EMF equation of a DC generator.
- 6. Compare Single phase and three phase induction motor.
- 7. State the advantages of stationary armature in an alternator.

- (5×6 = 30) [P.T.O.

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - I

- III (a) A circuit having a resistance of 12 Ohms an inductance of 0.15 H and capacitance of 100 Micro Farads connected in series across a 100 V, 15 Hz supply. Calculate the impedance, current, power factor and power consumed.
 - (b) Draw and explain plate earthling.

OR

- IV (a) Define the terms Inductive reactance, Capacitive reactance, Impedance, Power Factor.
 - (b) An inductance of 0.03H is connected in series with a 4 Ohms resistance. Calculate impedance, current power factor when connected across 200V, 50 Hz Supply.

- V (a) Illustrate the on load working of a transformer.
 - (b) State and explain Kirchoff's Law.

OR

- VI (a) A 25KVA single phase transformer has a 250 turns on the primary and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz mains. Calculate
 - (i) Primary & Secondary Current on full load
 - (ii) Secondary EMF
 - (iii) Maximum Flux in the core
 - (b) Explain the working of a auto transformer and list its advantages.

VII (a) Explain the principal of operation of DC generator.

(b) Explain the necessity of starter in a DC motor starting.

OR

- VIII (a) A 6 pole lap wound DC generator has 600 conductors on its armature. The flux per pole is 0.02 wb. Calculate
 - (i) The speed at which the generator must be run to generate 300 V.
 - (ii) What would be the speed if the generator were wave wound ?
 - (b) Draw and explain the characteristics of DC shunt motor.

UNIT - IV

IX (a) Explain the construction and working of a capacitor start induction run motor.

(b) To explain the relation between speed and frequency of an alternator.

OR

X (a) Derive the EMF equation of an alternator.8(b) Compare squirrel cage and slip-ring induction motor.7

8

7

8

7

8

7

8

7

8

7

8

7

8

7

TED (15) – 3044 (REVISION – 2015) Reg. No.....

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ELECTRONIC DEVICES AND CIRCUITS

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks : 10)

Marks

 $(5 \times 2 = 10)$

I Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. List different methods of inter stage coupling in amplifiers.
- 2. Write an expression for resonant frequency of resonant circuits.
- 3. Define piezo electric effect.
- 4. State Barkhausen criterion for oscillation.
- 5. List types of negative feedback in amplifiers.

PART — B

(Maximum marks : 30)

II Answer any five of the following questions. Each question carries 6 marks.

- 1. Explain emitter follower with the help of diagram.
- 2. Explain the effects of negative feedback in amplifiers.
- 3. Compare BJT and FET.
- 4. Explain importance of impedance matching in power amplifier.
- 5. Draw the circuit diagram of direct coupled amplifier and explain.
- 6. Explain importance of heat sink in power amplifier.
- 7. Draw and explain RC differentiating circuit with waveforms.

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III	(a)	Explain the principle of operation of transistor amplifier in Common emitter configuration.	8
	(b)	Explain frequency response of RC coupled amplifier.	7
		Or	
IV	(a)	Write expression for voltage gain, current gain, power gain, input and output impedances of common emitter amplifier.	8
	(b)	Draw and explain transformer coupled amplifier.	7
		Unit — II	
v	(a)	Draw and explain the circuit of complimentary push pull amplifier.	8
	(b)	Explain frequency response of single tuned amplifier and write Relation between resonant frequency, bandwidth and Q factor.	7
		Or	
VI	(a)	Classify power amplifiers with the help of proper diagrams.	8
	(b)	Draw and explain single tuned amplifier circuit.	7
		Unit — III	
VII	(a)	Derive an expression for feedback in amplifiers.	8
	(b)	Explain the working principle of JFET.	7
		Or	
VIII	(a)	Explain the types of negative feedback in amplifiers with the help of diagrams.	8
	(b)	Draw and explain UJT relaxation oscillator.	7
		Unit — IV	
IX	(a)	Explain the working of RC phase shift oscillator with the help of diagram.	- 7
	(b)	Explain the working of Schmitt trigger with the help of Circuit diagram and waveforms.	8
		Or	
X	(a)	Draw and explain Hartley oscillator.	7
	(b)	Explain the operation of transistor astable multivibrator with the help of circuit diagram and waveforms.	8

Marks

TED (15) - 3042(REVISION - 2015)

Ι

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

DIGITAL ELECTRONICS

[Time : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

 $(5 \times 2 = 10)$

Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. Convert binary number 101101 is equal to hexadecimal number.
- 2. List two alpha numeric codes.
- 3. List any two features of CMOS logic family.
- 4. Draw SR flip flop using NAND gate only.
- 5. Define resolution and accuracy for an ADC.

PART — B

(Maximum marks : 30)

II Answer any five of the following questions. Each question carries 6 marks.

- 1. State and explain Demorgan's theorems.
- 2. Draw and explain the operation of 4×1 Multiplexer.
- 3. Draw and explain the working principle of CMOS NAND gate.
- 4. State the race around condition and methods to overcome the problem.
- 5. Draw and explain the working of ring counter.
- 6. Explain Weighted resistor DAC.
- 7. Differentiate between synchronous and asynchronous counters.

[43]

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III	(a)	Implement AND, OR, NOT, EXOR and EXNOR using NAND gate.	10
	(b)	List the advantages and disadvantages of K-map.	5
		Or	
IV	(a)	Simplify using K-map	
		$\Sigma m(4,5,7,8,10,11,13,14) + \Sigma d(0,1,2)$	10
	(b) ⁻	Write short note on excess-3 code.	. 5
		Unit — II	
V	(a)	Explain the circuit of TTL inverter.	8
	(b)	Draw and explain the operation of 3 bit encoder.	7
		Or	
VI	(a)	Define the terms Noise margin, noise immunity, propagation delay, fan-in and fan-out.	10
	(b)	Draw and explain parallel adder.	5
		Unit — III	
VII	(a)	Explain the working of master slave JK flip flop.	8
	(b)	Explain the working of Johnson counter and its applications.	7
		Or	
VIII	(a)	Explain D and T flip flops.	8
	(b)	Explain the working of different types of shift registers.	7
		Unit — IV	
IX	(a)	Explain mod-8 synchronous down counter using JK flip flop.	9
	(b)	List the different types of ADC and DAC.	6
		Or	
X	(a)	Explain mod-10 asynchronous counter using JK flip flop.	9
	(b)	Explain Counter type ADC.	6

Marks

TED (15) - 3041 (REVISION - 2015)

Ι

Reg. No		
Signatu	e	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

COMMUNICATION ENGINEERING

[*Time* : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

 $(5 \times 2 = 10)$

Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. Define Skip Distance.
- 2. Draw the modulated waveform of FM.
- 3. Define signal to noise ratio.
- 4. Write the expansion of AFC.
- 5. Define Selectivity.

PART — B

(Maximum marks : 30)

II Answer any five of the following questions. Each question carries 6 marks.

- 1. Explain Space Wave Propagation.
- 2. What is MANET and write its applications ?
- 3. What are the needs for modulation ?
- 4. State sampling theorem and mention its significance.
- 5. Explain Pre-Emphasis and De-Emphasis.
- 6. What are the needs for Demodulation ?
- 7. Explain AM demodulation circuit using Diode Detector.

[42]

Marks

(Maximum marks : 60)

		(Answer one full question from each unit. Each full question carries 15 marks.)	
		. Unit — I	
III	(a)	List the Layers of Ionosphere and explain.	8
	(b)	Explain Ground Wave Propagation.	7
		Or	
IV	(a)	Name the Atmospheric effects of Electromagnetic radiation and explain.	9
	(b)	Explain the working of Half Wave Dipole Antenna.	6
		Unit — II	
V	<u>(a)</u>	Deduce the expression for Amplitude Modulated Wave.	9
	(b)	Explain PAM and PWM.	6
a. 4		Or	
VI	(a)	Draw and explain Pulse Code Modulation system.	9
	(b)	List the different Digital Carrier Modulation Schemes and draw the waveforms.	6
		Unit — III	
VII	(a)	With the help of a block diagram explain AM Transmitter.	10
	(b)	List different types of noises.	5
		Or	
VIII	(a)	With the help of a block diagram explain Direct FM Transmitter.	9
	(b)	Explain how to improve signal to nose ratio.	6
		Unit — IV	
IX	(a)	Draw and explain Super Heterodyne Receiver.	9
	(b)	Write a short note on simple AGC.	6
		Or	
X	(a)	Draw and explain FM Receiver.	9
	(b)	Compare AM & FM Receivers.	6

TED (15) – 3001

(REVISION - 2015)

Reg. No.

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ENVIRONMENTAL SCIENCE AND DISASTER MANAGEMENT

[*Time* : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

I Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. Define deforestation.
- 2. Define ecosystem.
- 3. Describe solid waste.
- 4. Define disaster.
- 5. Describe TREM card.

PART — B

(Maximum marks : 30)

II Answer any five of the following questions. Each question carries 6 marks.

- 1. Explain the uses of forest.
- 2. Point out the characteristics features of grassland ecosystem.
- 3. Discover the effects of noise pollution.
- 4. Discuss the causes of flood.
- 5. List the environmental effects of pesticides.
- 6. Describe biomagnification.
- 7. Discuss the control measures of marine pollution.

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT --- I

III (a) Explain the effect of dams on forest.

(b) Describe the importance of alternate energy sources.

OR

 $(5 \times 2 = 10)$

Marks

 $(5 \times 6 = 30)$

[P.T.O.

8

7

[29]

			Marks	
IV	(a)	Discuss the role of an individual in the conservation of natural resources.		8
	(b)	Point out the environmental effects of mining.		7
		Unit — II		
V	(a)	State the importance of biodiversity conservation.		8
	(b)	Explain the structure and function of desert ecosystem.		7
		Or		
VI	(a)	Explain a food chain with suitable example.		8
	(b)	Describe the effect of urbanization on environment.		7
		Unit — III		
VII	(a)	Describe the effects of water pollution.		8
	(b)	Explain a method to control air pollution.		7
		Or		
VIII	(a)	Describe the causes of thermal pollution.		8
	(b)	Explain the effects of nuclear pollution.		7
		Unit — IV		
IX	(a)	Describe the emergency phase of disaster management cycle.		8
	(b)	What are the sources of chemical disaster ?		7
		Or		
X	(a)	Explain effects of cyclone.		8
	(b)	Explain the uses of information technology in disaster management.		7